-
Overview of Gauss’ Theorem and Basics of Integration
It turns out that deriving Gauss’ Law is easier said than done. There are several steps according to a StackExchange post [1]. The first of these steps is understanding Gauss’ Theorem. Hmm. Perhaps Gauss used his own theorem to derive his electrostatics law. After a quick online search, it is clear that Gauss’ Theorem is…
-
Gauss’ Law, Part 1
In Derivation #3, the expression, $ \frac{\partial \beta(t)}{\partial t}$, was written. This is an expression for a derivative of a function $ \beta(t)$. Now that a derivative has been introduced, Maxwell’s equations can be investigated. I start with Gauss’ Law. But first, slightly more information about derivatives is needed. I can consider the pieces of…
-
Finite Differences
Here are a few notes about the symbol $ \Delta$. This symbol appears frequently in physics. Let $ \alpha$ be a real number. This statement is equivalent to $ \alpha \in \mathbb{R}$. Then $ \Delta \alpha$ can be defined as follows. Definition 1 Define a finite difference as $ \Delta \alpha \equiv \alpha_2 – \alpha_1$.…
-
Remarks on the Lorentz Transformation and One Question
This is a summary of the second part of Appendix A in Albert Einstein’s book [1]. By second part, I mean the part immediately after the derivation of the Lorentz transformation. If there is no relative motion between the coordinate systems with respect to the $ y$ and $ z$ axis of $ K$, then…