In this post, I show that
$\lim_{x\rightarrow a}[f(x) – g(x)] = \lim_{x \rightarrow a} f(x) – \lim_{x \rightarrow a} g(x) $
given that $\lim_{x \rightarrow a} f(x) = A$ and $\lim_{x \rightarrow a} g(x) = B$. To do this, I approximately follow the steps in Reference [1].
Objective:
The objective is to directly show that
$\lim_{x\rightarrow a}[f(x) – g(x)] = \lim_{x \rightarrow a} f(x) – \lim_{x \rightarrow a} g(x) $.
Proof:
Start with the left side,
$\lim_{x\rightarrow a}[f(x) – g(x)]$
From arithmetic,
$=\lim_{x\rightarrow a}[f(x) + (-1)g(x)]$
From this property,
$=\lim_{x\rightarrow a}f(x) + \lim_{x\rightarrow a}(-1)g(x)$
From this property,
$=\lim_{x\rightarrow a}f(x) + (-1)\lim_{x\rightarrow a}g(x)$
From arithmetic,
$=\lim_{x\rightarrow a}f(x) – \lim_{x\rightarrow a}g(x)$
$\square$
References:
[1] https://tutorial.math.lamar.edu/classes/calci/limitproofs.aspx