In this post, I show that
$\lim_{x\rightarrow a}[f(x)g(x)] = \lim_{x\rightarrow a} f(x) \lim_{x\rightarrow a} g(x)$
given that $\lim_{x\rightarrow a} f(x) = A$ and $\lim_{x\rightarrow a} g(x) = B$. To do this, I approximately follow the steps in reference [1].
Known:
Using the definition of a limit,
- $|f(x) – A|<\epsilon_1$ whenever $ 0 < |x-a| < \delta$, with $\epsilon_1 > 0$.
- $|g(x)- B|<\epsilon_2$ whenever $ 0 < |x-a| < \delta$, with $\epsilon_2 > 0$.
Objective:
The objective is to directly show that
$\lim_{x\rightarrow a}[f(x)g(x)] = \lim_{x\rightarrow a} f(x) \lim_{x\rightarrow a} g(x)$.
Proof:
Using algebra,
$ [f(x) – A] [g(x) – B] = f(x)g(x) – f(x)B – Ag(x) + AB$
Solving for $f(x)g(x)$,
$ [f(x) – A] [g(x) – B] + f(x)B + Ag(x) – AB = f(x)g(x)$
Substituting,
$ \lim_{x\rightarrow a}\big(f(x)g(x)\big) = \lim_{x\rightarrow a} \big( [f(x) – A] [g(x) – B] + f(x)B + Ag(x) – AB \big)$
Using this property and this property,
$ = \lim_{x \rightarrow a} [f(x) – A] [g(x) – B] + \lim_{x\rightarrow a}f(x)B $
$ + \lim_{x\rightarrow a}Ag(x) – \lim_{x\rightarrow a}AB $
From this property,
- $ \lim_{x\rightarrow a}AB = AB$
And from this property,
- $ \lim_{x\rightarrow a}f(x)B = B\lim_{x\rightarrow a}f(x) = AB$
- $ \lim_{x\rightarrow a}Ag(x) = A\lim_{x\rightarrow a}g(x)$
Substituting these three results,
$ \lim_{x\rightarrow a}\big(f(x)g(x)\big) = \lim_{x \rightarrow a} [f(x) – A] [g(x) – B] + A\lim_{x\rightarrow a}g(x)$
Examine two limits using the above properties:
- $\lim_{x \rightarrow a} [f(x) – A] = \lim_{x \rightarrow a} f(x) – \lim_{x \rightarrow a} A = A – A = 0$
- $\lim_{x \rightarrow a} [g(x) – B] = \lim_{x \rightarrow a} g(x) – \lim_{x \rightarrow a} B = B – B = 0$
Introduce a new expression and use this absolute-value property:
$| \big( f(x) – A \big) \big( g(x) – B \big)| = | f(x) – A | | g(x) – B | $
The left side of the previous line is equal to
$| \big( f(x) – A \big) \big( g(x) – B \big) – 0| $
so
$| \big( f(x) – A \big) \big( g(x) – B \big) – 0| = | f(x) – A | | g(x) – B | $
Next, examine the right side of the previous line. Since
- $ | f(x) – A | < \epsilon_1$
- $| g(x) – B | < \epsilon_2$
- $\epsilon_1 > 0$
- $\epsilon_2 > 0$
- A positive number multiplied by another positive number is a positive number,
the following inequalities are satisfied:
$| f(x) – A | | g(x) – B | < \epsilon_3$ with $\epsilon_3 > 0$.
From the transitive property,
$| \big( f(x) – A \big) \big( g(x) – B \big) – 0| < \epsilon_3$ with $\epsilon_3 > 0$
whenever $ 0 < |x-a| < \delta$.
More compactly, $ \lim_{x \rightarrow a} \big( f(x) – A \big) \big( g(x) – B \big) = 0$.
Recall that
$ \lim_{x\rightarrow a}\big(f(x)g(x)\big) = \lim_{x \rightarrow a} [f(x) – A] [g(x) – B] + A\lim_{x\rightarrow a}g(x)$.
Using $ \lim_{x \rightarrow a} [ f(x) – A ] [g(x) – B ] = 0$ and $\lim_{x \rightarrow a} f(x) = A$,
$ \lim_{x\rightarrow a} \big(f(x)g(x)\big) = A\lim_{x\rightarrow a}g(x) = \lim_{x \rightarrow a} f(x) \lim_{x\rightarrow a} g(x) $.
Therefore,
$ \lim_{x\rightarrow a}f(x)g(x) = \lim_{x \rightarrow a} f(x) \lim_{x\rightarrow a} g(x) $.
$\square$
References:
[1] https://tutorial.math.lamar.edu/classes/calci/limitproofs.aspx