From this post, one type of derivative is
$\lim_{\Delta x\rightarrow0^+}\frac{f(a+\Delta x)-f(a)}{\Delta x}\equiv\frac{df(x)}{dx}\big|_{a^+}$
To be consistent with my previous interpretation of $0^+$ in this post, $\Delta x \rightarrow 0^+$ means constraining $\Delta x$ to positive numbers.
Next, define $x$ and $a$ as variables for nonnegative real numbers, to avoid having a negative angle for the sine function. In this post, I find the derivative of $\sin x$ using the previous definition of a derivative. I also approximately follow the steps in reference [1].
Using $f(x) = \sin x$, the derivative is
$ \frac{d \sin(x)}{dx} \big|_{a^+} = \lim_{\Delta x \rightarrow 0^+} \frac{\sin(a+\Delta x) – \sin(a)}{\Delta x} $.
The next step is to rewrite the numerator with
$ \sin(a+\Delta x) = \sin a \cos \Delta x + \sin \Delta x \cos a $,
from a trigonometric identity that was derived in this post. The limit becomes
$ \frac{d \sin(x)}{dx} \big|_{a^+} = \lim_{\Delta x \rightarrow 0^+} \frac{ \sin a \cos \Delta x + \sin \Delta x \cos a – \sin a}{\Delta x} $.
From the distributive property,
$ \frac{d \sin(x)}{dx} \big|_{a^+} = \lim_{\Delta x \rightarrow 0^+} \bigg( \frac{ \sin a (\cos \Delta x – 1)}{\Delta x} + \frac{\sin \Delta x \cos a }{\Delta x} \bigg) $.
From this property,
$ \frac{d \sin(x)}{dx} \big|_{a^+} = \lim_{\Delta x \rightarrow 0^+} \frac{ \sin a (\cos \Delta x – 1)}{\Delta x} + \lim_{\Delta x \rightarrow 0^+} \frac{\sin \Delta x \cos a }{\Delta x} $.
And from this property,
$ \frac{d \sin(x)}{dx} \big|_{a^+} = -\sin a \lim_{\Delta x \rightarrow 0^+} \frac{ 1 – \cos \Delta x}{\Delta x} + \cos a \lim_{\Delta x \rightarrow 0^+} \frac{\sin \Delta x }{\Delta x} $.
From this post, it was shown that
$ \lim_{\Delta x \rightarrow 0^+} \frac{1 – \cos \Delta x}{\Delta x} = 0$.
And from this post, it is clear that
$\lim_{\Delta x \rightarrow 0^+} \frac{\sin \Delta x }{\Delta x} = 1$.
Inserting these results,
$ \frac{d \sin(x)}{dx} \big|_{a^+} = \cos a$
for any nonnegative real number $a$.
If $a=x$, then
$\boxed{ \frac{d \sin(x)}{dx} \big|_{x^+} = \cos x }$
for any nonnegative real number $x$.
References:
[1] Morris Kline. Calculus, An Intuitive and Physical Approach. Dover Publications, 1998. [2] David V. Widder. Advanced Calculus. Dover 1989.