I would like to evaluate
$ \frac{dx(r)}{dr} \bigg|_{x^+}$
with
$x(r) = r \sin\theta \cos\phi$.
Substituting, the expression to evaluate is
$ \frac{d(r \sin\theta \cos\phi )}{dr} \bigg|_{x^+}$
From the product rule,
$ \frac{dx(r)}{dr} \bigg|_{r^+} = \sin\theta \cos\phi \frac{dr}{dr} \bigg|_{r^+} + r \frac{d ( \sin\theta \cos\phi)}{dr} \bigg|_{r^+}$.
Each $x$ in the product rule has been replaced by $r$.
Since $ \sin\theta \cos\phi $ does not depend on $r$, $ \sin\theta \cos\phi $ is a constant function with respect to $r$. Differentiating the constant function,
$\frac{d ( \sin\theta \cos\phi)}{dr} \bigg|_{r^+} = 0$, so
$ \frac{dx(r)}{dr} \bigg|_{r^+} = \sin\theta \cos\phi \frac{dr}{dr} \bigg|_{r^+} $.
From the Calculus post,
$\frac{dr}{dr} \bigg|_{r^+} = \frac{dr |_{r^+}}{dr |_{r^+}} = \frac{ \lim_{\Delta r \rightarrow 0^+} \Delta r }{ \lim_{\Delta r \rightarrow 0^+} \Delta r }$.
From a limit property,
$\frac{ \lim_{\Delta r \rightarrow 0^+} \Delta r }{ \lim_{\Delta r \rightarrow 0^+} \Delta r } = \lim_{\Delta r \rightarrow 0^+} \frac{\Delta r}{\Delta r} = \lim_{\Delta r \rightarrow 0^+} 1 = 1$.
Hence
$ \boxed {\frac{dr}{dr} \bigg|_{r^+} = 1 }$ and
$ \boxed{ \frac{dx(r)}{dr} \bigg|_{r^+} = \sin\theta \cos\phi }$.
Leave a Reply