Using conclusions from previous posts, the following nine derivatives have been determined. $\frac{dx(r)}{dr}\big|_{r^+}=\sin\theta\cos\phi$ $\frac{dy(r)}{dr}\big|_{r^+} = \sin\theta\sin\phi$ $\frac{dz(r)}{dr}\big|_{r^+} = \cos\theta$ $\frac{dx(\phi)}{d\phi}\big|_{\phi^+} = -r\sin\theta\sin\phi$ $\frac{dy(\phi)}{d\phi}\big|_{\phi^+} = r \sin\theta \cos\phi$ $\frac{dz(\phi)}{d\phi}\big|_{\phi^+} = 0$ $\frac{dx(\theta)}{d\theta} \big|_{\theta^+} = r\cos\theta \cos\phi$ $\frac{d y(\theta)}{d \theta} \big|_{\theta^+} = r \cos\theta \sin\phi $ $\frac{dz(\theta)}{d\theta} \big|_{\theta^+} = -r \sin\theta$ Next, recall the following result from this…

# Author: Christina Daniel

## How to Use the Product Rule

I would like to evaluate two more derivatives. They are $ \frac{dx}{d\phi}\big|_{\phi^+} $ and $ \frac{dz}{d\theta}\big|_{\theta^+} $ given $x = r \sin\theta\cos\phi$ and $z = r\cos\theta$. Start with $ \frac{dx}{d\phi}\big|_{\phi^+} $. The first step is to substitute $x$ with $r \sin\theta \cos\phi$. $ \frac{dx}{d\phi}\big|_{\phi^+} = \frac{d r \sin\theta \cos \phi}{d\phi}\big|_{\phi^+} $. The next step is…

## Differentiating the Cosine Function

In this post, the derivative of the cosine function is found. To do this, the steps in reference 1 are followed. Start with a definition of a derivative, from this post: $\frac{df(x)}{dx}\bigg|_{a^+} \equiv \lim_{\Delta x \rightarrow 0^+} \frac{ f(a + \Delta x) – f(a) }{\Delta x} $. Since $f(x)$ and $\cos(x)$ are both functions of $x$,…

## Proving the Chain Rule

In this post, the chain rule is proved. This rule frequently appears in Calculus. Recall from this post that: $dx|_{a^+} \equiv \lim_{\Delta x \rightarrow 0^+} \Delta x$ and $df(x)|_{a^+} = \lim_{\Delta x \rightarrow 0^+} \Delta f (\Delta x)$. Suppose a variable $y$ can be written as a function of another variable $u$, and that $u$ can be written…