-
Definition of a Derivative
I copy the definitions of three different types of derivatives from [1]: $ \lim_{\Delta x \rightarrow 0} \frac{f(a+\Delta x) – f(a)}{\Delta x} \equiv \frac{d f(x)}{dx}\big|_{a}$ $ \lim_{\Delta x \rightarrow 0^+} \frac{f(a+\Delta x) – f(a)}{\Delta x} \equiv \frac{d f(x)}{dx}\big|_{a^+}$ $ \lim_{\Delta x \rightarrow 0^-} \frac{f(a+\Delta x) – f(a)}{\Delta x} \equiv \frac{d f(x)}{dx}\big|_{a^-}$ These definitions are best…
-
Definition of a Limit
First, here is a video I made about a limit: Understanding what a Limit is. Next, I copy a definition of a limit from [1]. A function $ f(x)$ approaches a limit $ A$ as $ x$ approaches $ a$ if, and only if, for each positive number $ \epsilon$ there is another, $ \delta$, such…