Gradient of a Function

Introduction In this post, I find an expression for the gradient of a function, in terms of spherical coordinates. This is a continuation of previous posts, such as this one. This post has a…

Read more

Del is More than an Upside Down Triangle

What is Del? In math, the symbol $\vec{\nabla}$ is called “del.” This symbol is defined in terms of Cartesian coordinates. $\vec{\nabla} \equiv \frac{d}{dx}\vec{e}_x + \frac{d}{dy}\vec{e}_y + \frac{d}{dz}\vec{e}_z$ The right side is a sum…

Read more

The Jacobian Matrix

Using conclusions from previous posts, the following nine derivatives have been determined. $\frac{dx(r)}{dr}\big|_{r^+}=\sin\theta\cos\phi$ $\frac{dy(r)}{dr}\big|_{r^+} = \sin\theta\sin\phi$ $\frac{dz(r)}{dr}\big|_{r^+} = \cos\theta$ $\frac{dx(\phi)}{d\phi}\big|_{\phi^+} = -r\sin\theta\sin\phi$ $\frac{dy(\phi)}{d\phi}\big|_{\phi^+} = r \sin\theta \cos\phi$ $\frac{dz(\phi)}{d\phi}\big|_{\phi^+} = 0$ $\frac{dx(\theta)}{d\theta} \big|_{\theta^+} =…

Read more

How to Use the Product Rule

I would like to evaluate two more derivatives. They are $ \frac{dx}{d\phi}\big|_{\phi^+} $ and $ \frac{dz}{d\theta}\big|_{\theta^+} $ given $x = r \sin\theta\cos\phi$ and $z = r\cos\theta$.   Start with $ \frac{dx}{d\phi}\big|_{\phi^+} $. The first…

Read more