In this post, I show that $\lim_{x\rightarrow a}\frac{f(x)}{g(x)}=\frac{\lim_{x\rightarrow a}f(x)}{\lim_{x \rightarrow a}g(x)}$ given that $\lim_{x\rightarrow a}f(x)=A$, $\lim_{x \rightarrow a} g(x) = B$, $B \ne 0$ and $g(x) \ne 0$. To do this, I approximately follow the steps in reference [1]. Known: From the the definition of a limit, Whenever $ 0 < |x-a| < \delta $, $…

# Category: Limit

## A Limit Involving the Cosine Function

Now that several limit properties have been proven, it is possible for me to evaluate $ \lim_{\alpha \rightarrow 0} \frac{1 – \cos \alpha}{\alpha} $. To do this, I follow the steps in Reference [1]. However, I am going to constrain $\alpha$, in radians, to be greater than or equal to zero, so that I do not…

## Limit of the Product of Two Functions

In this post, I show that $\lim_{x\rightarrow a}[f(x)g(x)] = \lim_{x\rightarrow a} f(x) \lim_{x\rightarrow a} g(x)$ given that $\lim_{x\rightarrow a} f(x) = A$ and $\lim_{x\rightarrow a} g(x) = B$. To do this, I approximately follow the steps in reference [1]. Known: Using the definition of a limit, $|f(x) – A|<\epsilon_1$ whenever $ 0 < |x-a| < \delta$, with…

## Limit of a Difference of Two Functions

In this post, I show that $\lim_{x\rightarrow a}[f(x) – g(x)] = \lim_{x \rightarrow a} f(x) – \lim_{x \rightarrow a} g(x) $ given that $\lim_{x \rightarrow a} f(x) = A$ and $\lim_{x \rightarrow a} g(x) = B$. To do this, I approximately follow the steps in Reference [1]. Objective: The objective is to directly show that…