## Derivative No. 7

Using the methods in this post, I would like to evaluate $\frac{dy(\theta)}{d\theta}\bigg|_{\theta^+}$ with $y(\theta)=r\sin\theta\sin\phi$ Substituting, the expression to evaluate is $ \frac{d \sin \theta r \sin \phi }{d\theta} \bigg|_{\theta^+}$. From the product rule, $ \frac{dy(\theta)}{d\theta} \bigg|_{\theta^+} = \sin\theta \frac{d r \sin \phi }{d\theta}\big|_{\theta^+} + r \sin \phi \frac{d \sin\theta }{d\theta}\big|_{\theta^+}$ Since $r \sin \phi $ does not depend on …