I would like to evaluate $ \frac{dx(r)}{dr} \bigg|_{x^+}$ with $x(r) = r \sin\theta \cos\phi$. Substituting, the expression to evaluate is $ \frac{d(r \sin\theta \cos\phi )}{dr} \bigg|_{x^+}$ From the product rule, $ \frac{dx(r)}{dr} \bigg|_{r^+}…

Read moreFrom this post, one definition of a derivative is $\lim_{\Delta x\rightarrow0^+}\frac{f(a+\Delta x)-f(a)}{\Delta x}\equiv\frac{d f(x)}{dx}\big|_{a^+}$. In this case, the values of $\Delta x$ are restricted to positive values due to the $+$ in $0^+$ written…

Read moreIn this post, I derive the so-called product rule that is taught in a Calculus course. The product rule enables one to find the derivative of a function which can be expressed as…

Read moreIn this post, I show that $\lim_{x\rightarrow a}\frac{f(x)}{g(x)}=\frac{\lim_{x\rightarrow a}f(x)}{\lim_{x \rightarrow a}g(x)}$ given that $\lim_{x\rightarrow a}f(x)=A$, $\lim_{x \rightarrow a} g(x) = B$, $B \ne 0$ and $g(x) \ne 0$. To do this, I approximately…

Read more