In this post, the derivative of the cosine function is found. To do this, the steps in reference 1 are followed. Start with a definition of a derivative, from this post: $\frac{df(x)}{dx}\bigg|_{a^+} \equiv \lim_{\Delta x \rightarrow 0^+} \frac{ f(a + \Delta x) – f(a) }{\Delta x} $. Since $f(x)$ and $\cos(x)$ are both functions of $x$, replace $f$ with $\cos$: $\frac{d\cos(x)}{dx}\bigg|_{a^+} = \lim_{\Delta x \rightarrow 0^+} \frac{ \cos(a + \Delta x) – \cos(a) }{\Delta x} $. Recall the angle addition identities. Specifically, $ \cos(A+B) = \cos A \cos B – \sin A \sin B$. Using this identity, the numerator of the previous limit can be rewritten: $\frac{d\cos(x)}{dx}\bigg|_{a^+} = \lim_{\Delta x \rightarrow 0^+} \frac{ \cos a \cos \Delta x – \sin a \sin \Delta x – \cos(a) }{\Delta x} $. Factor. $\frac{d\cos(x)}{dx}\bigg|_{a^+} = \lim_{\Delta x \rightarrow 0^+} \frac{ \cos a (\cos \Delta x – 1 )  – \sin a \sin \Delta x }{\Delta x} $. From this limit property, $\frac{d\cos(x)}{dx}\bigg|_{a^+} = \lim_{\Delta x \rightarrow 0^+} \frac{ \cos a (\cos \Delta x – 1 ) }{\Delta x} – \lim_{\Delta x \rightarrow 0^+}\frac{\sin a \sin \Delta x }{\Delta x} $. Using this limit property, $\frac{d\cos(x)}{dx}\bigg|_{a^+} = \cos a \lim_{\Delta x \rightarrow 0^+} \frac{  \cos \Delta x – 1 }{\Delta x} – \sin a \lim_{\Delta x \rightarrow 0^+}\frac{ \sin \Delta x }{\Delta x} $. The limit with the cosine function is evaluated here, and the limit with the sine function is determined here. Therefore, $\frac{d\cos(x)}{dx}\bigg|_{a^+} =  -\sin a $. Replacing $a$ by $x$, the previous equation becomes $ \boxed{ \frac{d\cos(x)}{dx}\bigg|_{x^+} =  -\sin x }$. This derivative of cosine is sine multiplied by $-1$. References: [1]