# derive-it.com

• ## The Jacobian Matrix

Using conclusions from previous posts, the following nine derivatives have been determined. $\frac{dx(r)}{dr}\big|_{r^+}=\sin\theta\cos\phi$ $\frac{dy(r)}{dr}\big|_{r^+} = \sin\theta\sin\phi$ $\frac{dz(r)}{dr}\big|_{r^+} = \cos\theta$ $\frac{dx(\phi)}{d\phi}\big|_{\phi^+} = -r\sin\theta\sin\phi$ $\frac{dy(\phi)}{d\phi}\big|_{\phi^+} = r \sin\theta \cos\phi$ $\frac{dz(\phi)}{d\phi}\big|_{\phi^+} = 0$ $\frac{dx(\theta)}{d\theta} \big|_{\theta^+} = r\cos\theta \cos\phi$ $\frac{d y(\theta)}{d \theta} \big|_{\theta^+} = r \cos\theta \sin\phi$ $\frac{dz(\theta)}{d\theta} \big|_{\theta^+} = -r \sin\theta$ Next, recall the following result from this…

• ## The Crux of Calculus

Define $\Delta x \equiv x_2 – x_1$, to be consistent with this post. Similarly, define $\Delta y \equiv y_2 – y_1$ and $\Delta z \equiv z_2 – z_1$. The Cartesian coordinates are $x$, $y$, & $z$. In contrast, the spherical coordinates are $r$, $\theta$, & $\phi$. Here, $\phi$ is the azimuthal angle in the $xy$-plane. Next,…