Showing: 1 - 2 of 2 RESULTS
Differentiation

The Jacobian Matrix

Using conclusions from previous posts, the following nine derivatives have been determined. $\frac{dx(r)}{dr}\big|_{r^+}=\sin\theta\cos\phi$ $\frac{dy(r)}{dr}\big|_{r^+} = \sin\theta\sin\phi$ $\frac{dz(r)}{dr}\big|_{r^+} = \cos\theta$ $\frac{dx(\phi)}{d\phi}\big|_{\phi^+} = -r\sin\theta\sin\phi$ $\frac{dy(\phi)}{d\phi}\big|_{\phi^+} = r \sin\theta \cos\phi$ $\frac{dz(\phi)}{d\phi}\big|_{\phi^+} = 0$ $\frac{dx(\theta)}{d\theta} \big|_{\theta^+} = r\cos\theta \cos\phi$ $\frac{d y(\theta)}{d \theta} \big|_{\theta^+} = r \cos\theta \sin\phi $ $\frac{dz(\theta)}{d\theta} \big|_{\theta^+} = -r \sin\theta$ Next, recall the following result from this post. This matrix equation can be rewritten by substituting the nine derivatives listed at the beginning of the current post. Replacing each $a$ with the corresponding independent variable, the result is: This matrix equation includes nine equations relating dummy variables in Cartesian coordinates to dummy …

Coordinate Systems Differentiation Integration

The Crux of Calculus

Define $\Delta x \equiv x_2 – x_1$, to be consistent with this post. Similarly, define $\Delta y \equiv y_2 – y_1$ and $\Delta z \equiv z_2 – z_1$. The Cartesian coordinates are $x$, $y$, & $z$. In contrast, the spherical coordinates are $r$, $\theta$, & $\phi$. Here, $\phi$ is the azimuthal angle in the $xy$-plane. Next, use this post to obtain the equations relating Cartesian coordinates to spherical coordinates. In particular: $x = r \sin\theta \cos \phi $ $y = r \sin \theta \sin \phi $ $z = r \cos\theta $ Note that $x$ changes if $r$ changes, $\theta$ changes, and/or $\phi$ changes. …