## Limit of the Product of Two Functions

In this post, I show that $\lim_{x\rightarrow a}[f(x)g(x)] = \lim_{x\rightarrow a} f(x) \lim_{x\rightarrow a} g(x)$ given that $\lim_{x\rightarrow a} f(x) = A$ and $\lim_{x\rightarrow a} g(x) = B$. To do this, I approximately follow the steps in reference [1]. Known: Using the definition of a limit, $|f(x) – A|<\epsilon_1$ whenever $ 0 < |x-a| < \delta$, with …