## Limit of a Sum of Two Functions

In this post, I show that $\lim_{x \rightarrow a} [f(x) + g(x)]$ is equal to $\lim_{x \rightarrow a}f(x) + \lim_{x \rightarrow a} g(x)$ given that $\lim_{x \rightarrow a}f(x) = A$ and $\lim_{x \rightarrow a}g(x) = B$. To do this, I approximately follow the steps in Reference . Objective: Using the definition of a limit, the objective is to show that: For each positive number $\epsilon_2$ there is another, $\delta$, such that whenever $0 < |x-a| < \delta$ we have $|f(x)+g(x) – (A+B)| < \epsilon_2$. Proof: From the definition of a limit, it is known that For each positive number $\epsilon_0$ there is another, $\delta$, such that whenever $0 < |x-a| < \delta$ we have $|f(x) – A| < \epsilon_0$. For each positive number $\epsilon_1$ there is another, $\delta$, such that whenever $0 < |x-a| < \delta$ we have $|g(x) – A| < \epsilon_1$ Consider the expression, $|f(x)+g(x) – (A+B)|$. This can be rearranged: $|f(x)+g(x) – (A+B)| = |f(x)-A+g(x)-B|$. Next, use the triangle inequality to write $|f(x)-A+g(x)-B| \le |f(x)-A|+|g(x)-B|$. Using what is known about the individual limits, there is an upper bound: $|f(x)-A|+|g(x)-B| < \epsilon_0 + \epsilon_1$. Define $\epsilon_2 \equiv \epsilon_0 + \epsilon_1$. Since $\epsilon_0 > 0$ and $\epsilon_1 > 0$, it follows that $\epsilon_2 > 0$ as needed. Therefore, $|f(x)+g(x) – (A+B)| \le |f(x)-A|+|g(x)-B| < \epsilon_2$. Since there is no equation relating $\epsilon_2$ and $\delta$, $|f(x)+g(x) – (A+B)| < \epsilon_2$ whenever $0 < |x-a| < \delta$ with $\epsilon_2 > 0$. $\square$ References:  https://tutorial.math.lamar.edu/classes/calci/limitproofs.aspx